

GEOLOGICAL SURVEY OF INDIA

Landslide Hazard & Risk Analysis

Dr. Saibal Ghosh

Director (Geology), Geohazard Research & Management (GHRM) Centre Geological Survey of India, CHQ, Kolkata <u>saibal.ghosh@gsi.gov.in; saibal.springdale@gmail.com</u> Mobile: +91 9433749650; +91 8595456216

Follow us on: 🔼 🛃 💟 🞯 🛅

We will discuss...

- Definitions & Landslide Risk Management Framework
- Landslide Susceptibility Analysis (LSA): Macro scale 1:50,000
 - Why Empirical Techniques ???
 - Empirical LSA Conceptual Model
 - Empirical LSA Processes and Steps
- Debris flow impact probability
- Landslide Management Map
- Landslide Hazard & Risk Analysis
 - Data Requirement and Methodology
 - Limitations and Constraints

Landslide – A complex hazard

Varied magnitudes ... varied extent of effects ... A HAZARD!!!

Definition of Landslide Risk

• Risk is the amalgam of the <u>likelihood</u> and <u>amount</u> of **potential** <u>adverse consequences to an element at risk</u> arising from a <u>landslide event</u> of <u>certain magnitude</u> within a stated <u>period</u> and <u>area</u>.

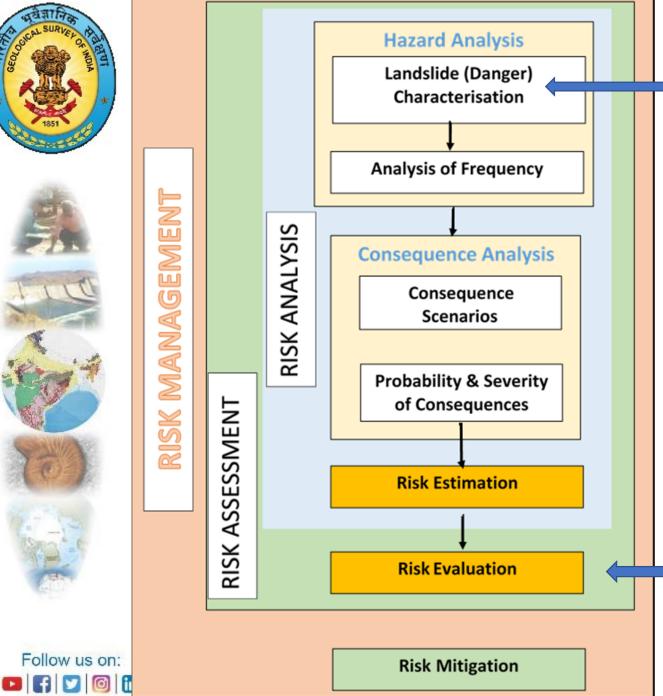
- Lee and Jones, 2004

Definition of Landslide Hazards

□ According to Varnes (1984) & UNESCO's IAEG Commission on landslides and other mass movements and Guzzetti (1999), "landslide hazard" is defined as the probability of occurrence of a damaging landslide of a certain magnitude in a given area and in a given period of time.

□ Therefore, landslide hazard in a given area is a function of three parameters, namely, **spatial**, **temporal** and **magnitude** probabilities of landslide occurrence.

Landslide Hazards Analysis



- □ Spatial Prediction: Where will a landslide occur ???
- **Temporal Prediction: When** will it occur ???
- □ Magnitude Prediction: How large or how big that landslide/ the landslide event could be ???

Landslide Susceptibility Analysis (LSA) is the method to predict the spatial locations where the future landslides can occur

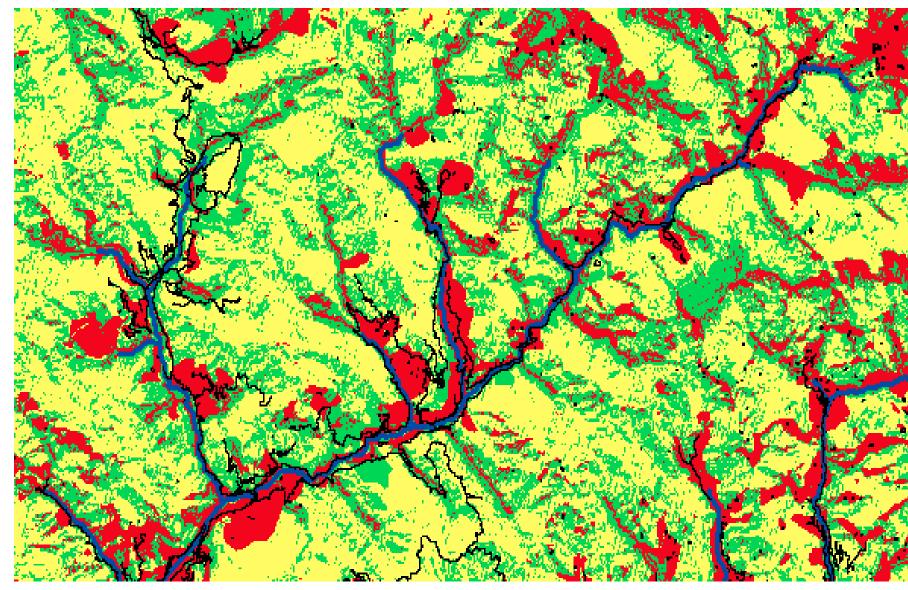
Landslide Susceptibility Analysis (LSA)

Making judgments "on the tolerability of the risk on the basis of a risk analysis" while considering influencing factors

Fell *et al.*, 2005

Landslide Zoning – A multi-scale & multi-purpose exercise

Purpose		Type of Zor	ning			Levels of	Zoning		Mapping
		Inventory	Susceptibility	Hazard	Risk	Primary	Intermediate	Advanced	Scale
Regional	Information								1:50,000
Zoning	Advisory								and
	Statutory								smaller
Local	Information								1:5000 to
Zoning	Advisory								1:10,000
	Statutory								
Site-	Information								1:5000
specific	Advisory								or larger
Zoning	Statutory								
	Design								


	Applicable
(195-1)	May be applicable
	Not Recommended
Follow us on:	May not be feasible
🕒 🖪 💟 🞯 📖	•

- Purpose
- Type
- Level
- Scale

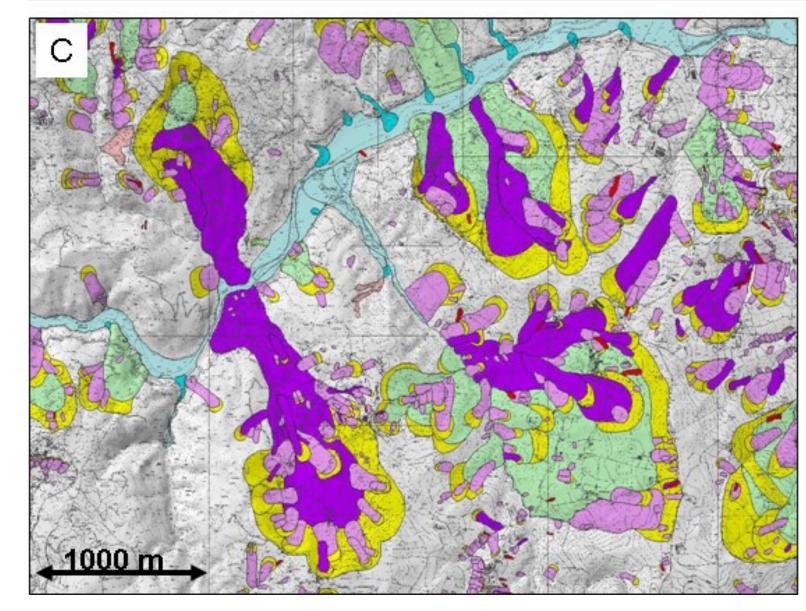
Understanding Landslide Susceptibility

Follow us on:

Red – High; **Green** – Moderate & <u>Yellow</u> – Low;

Methodology: LSA (Macro scale 1:50,000)

 Using heuristic (knowledge-driven) approach, where a-priori knowledge on landslides is insufficient or absent (Direct and Indirect/ semi-quantitative)


 Or, through various data-driven empirical (statistical) techniques using the a-priori knowledge on past/present landslides

Follow us on:

Heuristic/ Knowledge Driven (Direct)

Geomorphic mapping

Understanding Processes as well as Landforms

Heuristic/ Knowledge Driven (Direct)

Limitations & Constraints

✓ Depends on the expertise and experience levels of the geoscientists engaged in geomorphic mapping.

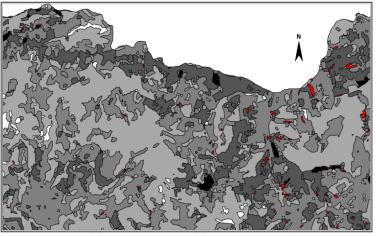
✓ Time consuming and costly exercise

✓ Scope of validation in general is absent or not followed.

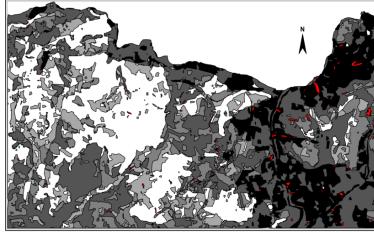
Heuristic/ Knowledge Driven (Indirect)

✓ It is based on specified weights or ranks to a set of predefined spatial factors (e.g. BIS method 1998)

✓Which is an Indirect knowledge-driven (heuristic) method originally proposed by Anbalagan (1992).


Heuristic/ Knowledge Driven (Indirect)

0.0


Geofactor	Description	Categ	ory	LHEF	-
		Туре	Quartzite & Limestone	0.2	
	Deals trung	1 1	Granite & Gabbro	0.3	- 1
	Rock type Type – 1**	1	Gneiss	0.4	
	Highly weathered (4);	Туре	Sandstone & minor beds of clayston	e 1.0	
	moderately weathered (3);		Poorly cemented sandstone with	1.3	
	Slightly weathered (2)	2	minor clay/shale		
	Type – 2 **		Slate & phyllite	1.2	-
	Highly weathered (4);	Туре	Schist	1.3	
	Moderately weathered (3); Slightly weathered (2)		Shale with interbedded clayey & non-clayey	1.8	
Lithology			Highly weathered shale, phyllite & schist	2.0	
			well compacted alluvial fill material	0.8	
			y soil with naturally formed surface	1.0	
			soil with naturally formed surface	1.4	
		(alluv			
	Soil type		s comprising mostly rock pieces mixed	t	
			layey/ sandy soil (colluvial) - older	1.2	l I
			ompacted		l
		Debris	comprising mostly rock pieces mixed	1	
		with c	layey/ sandy soil (colluvial) – younge	r 2.0	
		> 30°	material	0.20	
	Delationship of parallelism			0.20	1
	Relationship of parallelism between the slope and	21 - 11° -	200	0.25	
	vulnerable discontinuity	6° - 1		0.40	
	valierable alsolitinatey	< 5°	0	0.50	
		> 10°		0.3	1
	Relationship of dip of	0° - 1		0.5	
	vulnerable discontinuity	0°	0	0.7	
	and inclination of slope	0° - (·	-10°)	0.8	1
Structure		< -10		1.0	
		< 15		0.20	1
		16° -	25°	0.25	
	Dip of vulnerable	26° -	35°	0.30	
	discontinuity	36° -	45°	0.40	
		> 45°		0.50	1
	Depth of soil cover	< 5m.		0.65	l
	Depth of soil cover	6 - 10		0.85	l
		11 - 1		1.30	l
		16 - 2		2.0	l
	Escarpment / cliff	> 45°		2.0	1
~	Steep slope	36° -		1.7	
Slope	Moderately steep slope	26° -		1.2	
	Gentle slope	16° -		0.8	
	Very gentle slope	< = 1	5°	0.5	
Relative	< 100m.			0.3	l
relief	101 – 300m. > 300m.			0.6 1.0	l
		d flat !	and	0.60	l
	Agricultural land / populate Thickly vegetated forest are		anu	0.60	l
Landuse and	Moderately vegetated forest area	d		1.20	l I
land cover	Sparsely vegetated area wi	th less	around cover	1.20	l
	Barren land	un less	ground cover	2.0	l I
	Flowing			1.0	l
Hydro-	Dripping			0.8	l
geological	Wet			0.8	l .
conditions	Damp			0.5	l
conditions	Darip			0.2	l i

Dry

TEHD Values	Landslide s	susceptible zone (LHZ)
TEHD values	Class	Category
< 3.5	1	Very Low Susceptibility
3.5 - 5.0	2	Low Susceptibility
5.0 - 6.0	3	Moderate Susceptibility
6.0 - 7.5	4	High Susceptibility
> 7.5	5	Very High Susceptibility

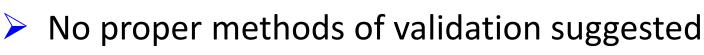
5 km 1: Very low susceptibility 4: High susceptibility 2: Low susceptibility 5: Very high susceptibility incidences (a) 3: Moderate susceptibility

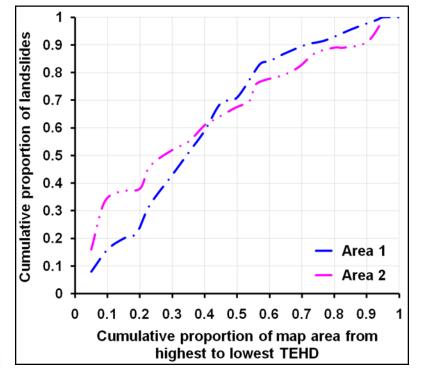
 5 km
 1: Very low susceptibility
 4: High susceptibility
 4: High susceptibility

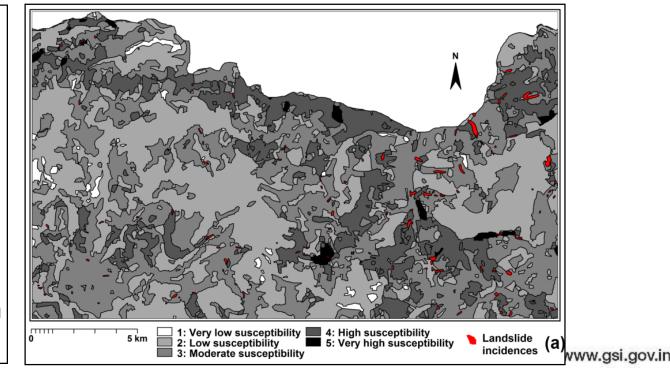
 2: Low susceptibility
 5: Very high susceptibility
 1: Compared to the susceptibility
 1: Compared to the susceptibility

 3: Moderate susceptibility
 3: Moderate susceptibility
 1: Compared to the susceptibility
 1: Compared to the susceptibility

Heuristic/ Knowledge Driven (Indirect) Limitations & Constraints


Pre-defined factors & weights may lead to poor prediction




Follow us on:

10 in

Specific knowledge on landslide types & processes is not used

 \bigcirc

Data-driven Empirical Method

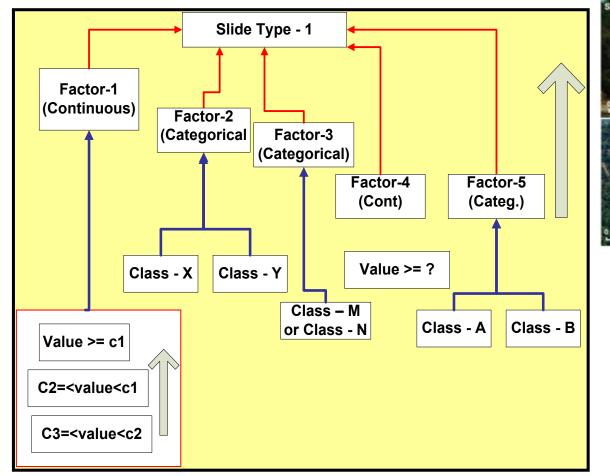
- These methods are mainly based on various statistical and/or mathematical techniques using the a-priori knowledge on past/present landslides
 - Bivariate statistics
 - Multivariate statistics (DFA, LR)
 - Artificial Neural Network (ANN)
 - Bayesian Belief Function ... etc.

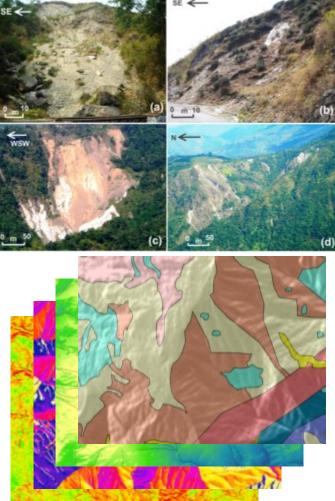
Bivariate process

- Intuitive and instructive.
- Intervention by experts...possible
- Easy to use and understand the model processes.

Multivariate process or ANN

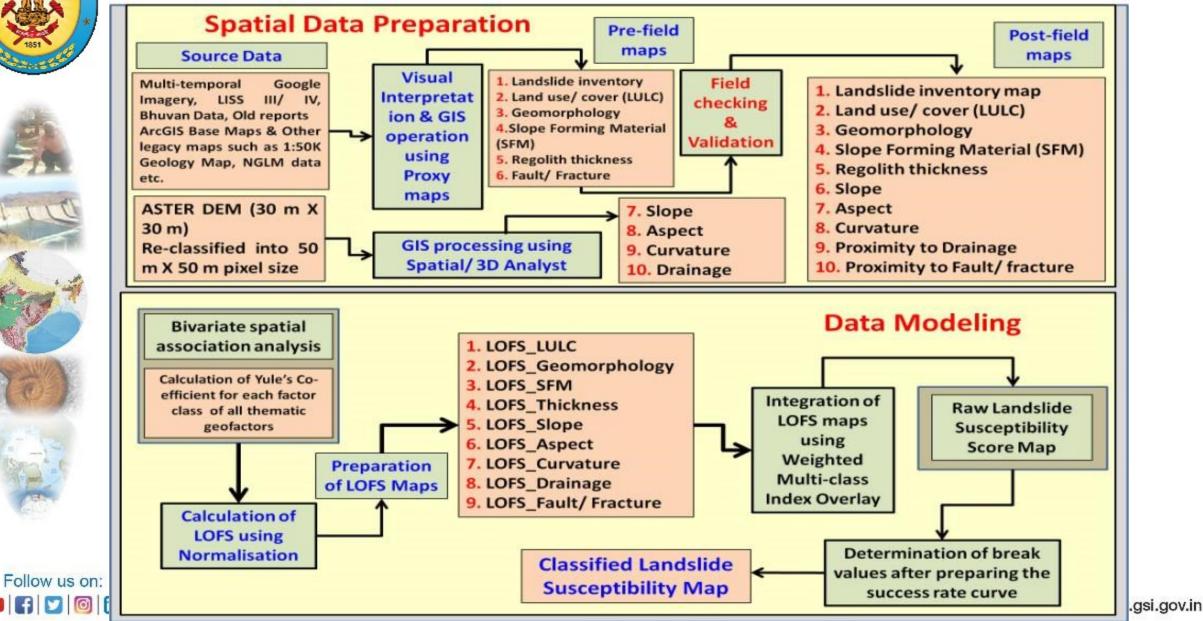
- Mostly black box type; difficult to understand model processes.
- Scope of intervention by experts is limited to none.
- Sometimes select the predictors having least genetic implications.



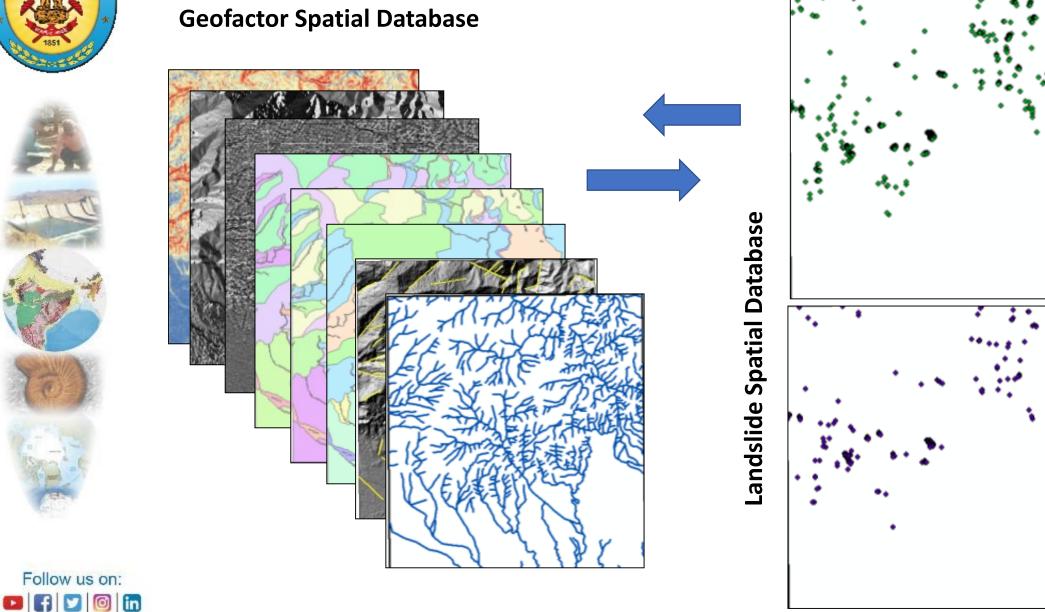


Data-driven Empirical - Methodology

Conceptual Model



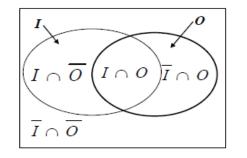
Follow us on:



Methodology-Landslide dominant terrain

Methodology-Landslide dominant terrain

www.gsi.gov.in



Follow us on:

Mathematics/ Algorithm

Yule's Co-efficient (for Categorical Themes) (Yule, 1912; Fleiss, 1991; Bonham-Carter, 1994)

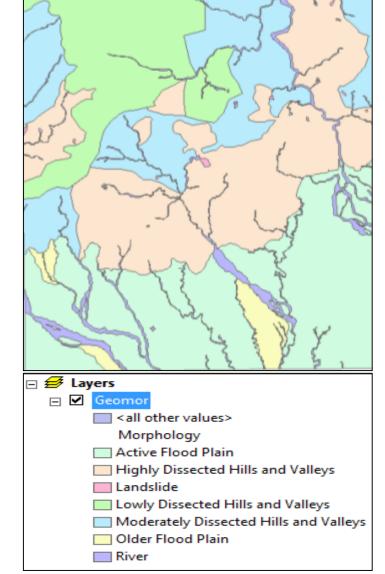
- O = known geo-object of interest
- I = indicator (or evidence) pattern
- T = study area

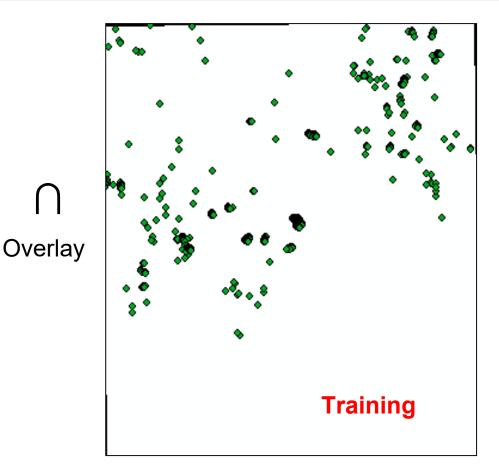
$$I \cap O = T_{11} = 345$$
$$I \cap \overline{O} = T_{21} = 141$$
$$\overline{I} \cap O = T_{12} = 382$$
$$\overline{I} \cap \overline{O} = T_{22} = 2077$$

I T = 2945; *I* = 486

T = 2945; O = 727

O


*T*₁₁ → derived from cross operation
 *T*₁₂ = *O* - *T*₁₁
 *T*₂₁ = *I* - *T*₁₁
 *T*₂₂ = *T* - *T*₁₁ - *T*₁₂ - *T*₂₁
 YC = (SQRT)


YC = (SQRT(T11/T21)-SQRT(T12/T22))/ (SQRT(T11/T21)+SQRT(T12/T22))

Note: an example of *I* is <u>a</u> slope aspect class

Methodology-Landslide dominant terrain

Example

Which Geomorphology classes have positive spatial association with landslides

Follow us on:

Methodology-Landslide dominant terrain

Histogram Table of Geomorphology Theme (NpixC)

Cross Table of Geomorphology and Training Landslide Data (T11)

Dependent Table "GeomXLS" - TableCross(Geomorphology.mpr.LS.mpr.JgnoreUndefs) - ILWIS

File Edit Columns Records View Help

fstogram 'Geomorphology' - TableHistogram(Geomorpholo	gy/mpr) - ILWIS				and a state
Edit Columns Records View Help					
Ba 😭 🛔 H < 🗎 > H					
		npix	npixpet	petnetund	Area
201010-	Active Flood Flain	227078	28.98	29.71	204370200
	Highly Dissected Hills and Valleys	222887	28.44	29.16	200598300
150000-	Landslide	905	0.12	0.12	814500
100000-	Lowly Dissected Hills and Valleys	115470	14.74	15.11	103923000
50000-	Moderately Dissected Hills and Valleys	141876	18.11	18.56	127688400
	Older Flood Flain	18936	2.42	2.48	17042400
The second state state state and a state s	AT RIVER	37129	4.74	4.56	33416100
to Food the date for the and the food the	Nin	905	0.12	0.12	814500
and and and	Max	227078	28.98	29.71	204370200
district district	Avg	109183	13.94	14.29	98264700
045 04915	510	93983	11.99	12.29	84584531
L' Martin	5un	764281	97.55	100.00	687852900

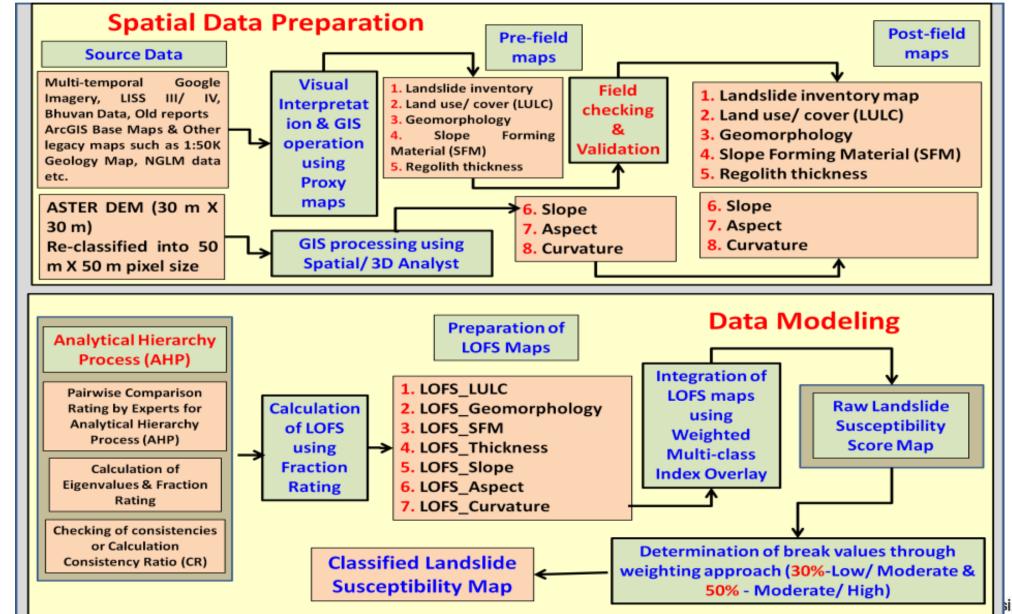
	Geomorphology	LS	NPix
Active Flood Plain * Slide	Active Flood	Slide	27
Highly Dissected Hills and Valleys *	Highly Dissec	Slide	3170
Landslide * Slide	Landslide	Slide	29
Lowly Dissected Hills and Valleys * 1	Lowly Dissect	Slide	1716
Moderately Dissected Hills and Valley	Moderately Di	Slide	2574
Older Flood Plain * Slide	Older Flood P	Slide	5
River * Slide	River	Slide	266

- T12 = NpixLS T11
- T21 = NpixC– T11

T22 = NpixT – T11-T12-T21

	NpixC	NpixT	T11	T21	NpixLS	T12	T22	Yc	LOFS
Active Flood Plain	227078	764281	27	227051	7787	7760	529443	-0.835	0.00
Highly Dissected Hills and Val	222887	764281	3170	219717	7787	4617	536777	0.129	0.45
Landslide	905	764281	29	876	7787	7758	755618	0.285	1.00
Lowly Dissected Hills and Val	115470	764281	1716	113754	7787	6071	642740	0.117	0.41
Moderately Dissected Hills and	141876	764281	2574	139302	7787	5213	617192	0.193	0.68
Older Flood Plain	18936	764281	5	18931	7787	7782	737563	-0.727	0.00
River	37129	764281	266	36863	7787	7521	719631	-0.092	0.00
Min	905	764281	5	876	7787	4617	529443	-0.835	0.00
Max	227078	764281	3170	227051	7787	7782	755618	0.285	1.00
Avg	109183	764281	1112	108071	7787	6675	648423	-0.133	0.36
StD	93983	0	1356	93217	0	1356	93217	0.458	0.39
Sum	764281	5349967	7787	756494	54509	46722	4538964	-0.931	2.54

Follow us on:


www.gsi.gov.in

Follow us on:

🕒 🗗 💟 🞯 🛅

Methodology-Landslide deficient terrain

i.gov.in

Methodology-Landslide deficient terrain

Discussion to fix up pairwise comparison rating – expert-driven technique prior to application of AHP

Follow us on:

Methodology-Landslide deficient terrain

Thematic classes and their mutual rankings (in a scale of 0 to 9) for preparation of knowledge-driven pairwise comparison matrix in AHP for states of Southern & Central Region (MH=Maharashtra, KG=Karnataka and Goa, TN=Tamil Nadu, Ker=Kerala).

	Curvature	2	_	-	_
		MH	KG	TN	Ker
1	Concave (upto -0.1)	4	4	4	4
2	Flat (-0.1 to 0.1)	2	2	2	2
3	Convex (>0.1)	6	6	6	6
	Slope		_		
		MH	KG	TN	Ker
4	<15	2	2	2	2
5	15-25	4	4	4	6
6	25-35	9	8	8	8
7	35-45	8	6	6	4
8	>45	7	2	2	2
	Landuse/Landcov	er (LULC)			
		MH	KG	TN	Ker
9	Barren	2	1	0	2
10	Sparse Vegetation	6	7	5	4
11	Moderate Vegetation	6	5	5	6
12	Thick Vegetation	4	4	4	4
13	Fallow Land	1	1	1	1
14	Swamp	0	0	0	0
15	Mangroves	0	0	0	0
16	Salt pan	0	0	0	0
17	Barren Sand	0	0	0	0
18	Extensive Slope Cut	9	9	9	9
19	Quarry	2	5	2	2
20	Dumping Ground	6	6	6	6
21	Cultivation	3	2	3	2
22	Settlement	2	1	2	2
23	Settlement on modified slope	7	7	8	9
24	Plantation (LHP)	2	3	4	6
24 25		4	4	3	4

Pairwise comparison matrix prepared by experts/ workers

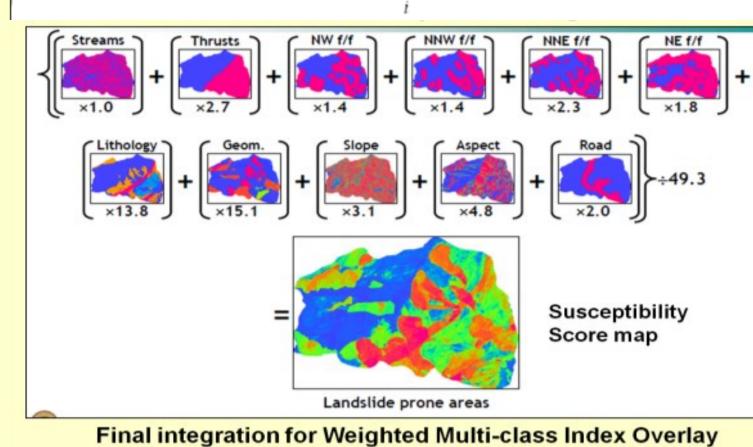
www.gsi.gov.in

Methodology-Landslide deficient terrain

12 ESC 8.00 9.00 7.00 8.00 4.00 7.00 5.00 4.00 7.00 5.00 4.00 7.00 5.00 4.00 7.00 5.00 4.00 7.00 8.00 6.00 <	-	818	• (1	5	=83/1	58515																					
A starting starti		-	C and	D		1	6	н			1	ĸ	L		4	N	0										
A startings and was and wa	2	α.	LHP	ныр	TV	MV	5V	SET	88		WL	ESC	QR	JH				Fo	or 1st T	able.							
wind		1.0				-										_				abic,							
Performantion of a substantial and a substan		-			-	-			_							-	_	a	ways					- Λ Λ			
Performantion of a substantial and a substan																		co	nside	r row							
Section and the section of the section and the section and	2 MV	3.00	4.00	2.00	1.0	0 1.0	0 0.33	2	2.00	0.50	0.33	0.17	6	.50	0.33				itoria								
Set as the set of a set of		-				-												cr	iteria								\sim
Set as the set of a set of																-		W	ith res	spect to	12.2		21	GUI	al		51
Exermination of all all all all all all all all all al	11 WL	- A second data	And the second second	International Action State	And and a state of the		and the second se								and the second	-	_		lumn	critoria							- /
B a b b b b b b b b b b	12 ESC	_	-		-	-						-							unin	cincenta							
Si Num exit Law exit to a the state of th		_				-		-				-	-	-		-	_										
Certain de regeneration en la construction de l	15 SUM	the second second	and the local division of the local division		And in case of the local diversion of the local diversion of the local diversion of the local diversion of the	the second second		-								-	_	East	- and -	Table							
a a	16 Calcul	lation of	igenvalu	es, fractio	n rating	g and LOF	5																				
size ass	17	a	100.00	ныр		MV		-	88	0.07	JW	Tares .	QR	JH .				eig	enval	ues of							
bit with and and and and and and and and and and	15 CL 19 UHP	_							_									ea	ch col	umn are	a (
22 MV 647 <td< th=""><th>20 HHP</th><th>_</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>0.12</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	20 HHP	_			-							-					0.12										
Image: Note of the state o	21 TV			-	-					_					0.02 0.022	97187	0.08	OD	tained	after							
as with a and a a	23 SV	_	-							-			8 U	10/24	s, fractio	on ratin	g and	LOFS									
Is int 0.10 0.11 0.11 0.02	24 SET	0.05	0.06	0.0	0.0	5 0.0				17		CL	-			-	_	_	sv	SET E	R	WL	ESC	OR	ЛН	Frac Rate	LOFS
Image: Note of the state of the st	25 BR		-	-	-							_	-	-			_		_								
etermination of Ratings and Weights 20 HHP 0.05 0.06 0.03 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02	27 ESC		-	-	-					-																	
$\frac{1}{20} + \frac{1}{20} $	28 QR				And and a design of the local division of the local division of the local division of the local division of the	and the second second						_	_			_	_										-
$\begin{array}{c} \begin{array}{c} 22 & MV & 0.07 & 0.08 & 0.07 & 0.07 & 0.06 & 0.07 & 0.03 & 0.04 & 0.06 & 0.03 & 0.04 & 0.05270452 & 0.03 \\ 23 & 5V & 0.12 & 0.12 & 0.13 & 0.12 & 0.14 & 0.11 & 0.13 & 0.13 & 0.11 & 0.08 & 0.13 & 0.11 & 0.1962365 & 0.02 \\ 24 & 5ET & 0.05 & 0.06 & 0.03 & 0.05 & 0.02 & 0.03 & 0.05 & 0.02 & 0.03 & 0.0488679 & 0.02 \\ 25 & 8R & 0.10 & 0.10 & 0.10 & 0.10 & 0.09 & 0.05 & 0.10 & 0.07 & 0.05 & 0.07 & 0.05 & 0.0786944 & 0.02 \\ 25 & WL & 0.12 & 0.12 & 0.13 & 0.12 & 0.14 & 0.11 & 0.13 & 0.13 & 0.11 & 0.068 & 0.13 & 0.11 & 0.1962365 & 0.02 \\ 25 & WL & 0.12 & 0.12 & 0.12 & 0.13 & 0.12 & 0.14 & 0.11 & 0.13 & 0.13 & 0.11 & 0.068 & 0.13 & 0.11 & 0.1962365 & 0.02 \\ 27 & ESC & 0.20 & 0.17 & 0.23 & 0.20 & 0.27 & 0.43 & 0.23 & 0.34 & 0.43 & 0.34 & 0.43 & 0.29917688 & 1.14 \\ 27 & ESC & 0.20 & 0.17 & 0.23 & 0.20 & 0.27 & 0.43 & 0.23 & 0.34 & 0.43 & 0.34 & 0.43 & 0.29917688 & 1.14 \\ 28 & QR & 0.10 & 0.10 & 0.10 & 0.10 & 0.09 & 0.05 & 0.10 & 0.07 & 0.05 & 0.07869444 & 0.02 \\ 29 & JH & 0.12 & 0.12 & 0.13 & 0.11 & 0.13 & 0.13 & 0.11 & 0.08 & 0.13 & 0.11 & 0.1962365 & 0.00 \\ 29 & JH & 0.12 & 0.12 & 0.13 & 0.12 & 0.14 & 0.11 & 0.13 & 0.13 & 0.01 & 0.09 & 0.05 & 0.07869444 & 0.02 \\ 20 & J & J & J & J & J & J & J & J & J & $	29 JH	0.13	0.12	0.1	0.1	2 0.3	4 0.11	0	1.13	_		_	_					_									-
etermination of Ratings and Weights 23 \$V 0.12 0.13 0.12 0.14 0.11 0.13 0.13 0.11 0.08 0.13 0.11 0.1962385 0.0 24 SET 0.05 0.06 0.03 0.05 0.02 0.03 0.05 0.02 0.03 0.05 0.07 0.07 0.05 <td>34</td> <td>-</td> <td></td> <td></td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	34	-			_	-	-	-	-			_	_			_	_										-
etermination of Ratings and Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1 st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the																											
etermination of Ratings and Weights 25 BR 0.10 0.10 0.10 0.09 0.05 0.10 0.07 0.05 0.07 0.05 0.07869444 0.02 28 WL 0.12 0.11 0.13 0.11 0.13 0.11 0.08 0.13 0.11 0.116 0.196 0.07 0.05 0.07 0.05 0.07869444 0.02 29 JH 0.12 0.10 0.10 0.10 0.09 0.05 0.10 0.07 0.05 0.07 0.07 0.05 0.07869444 0.02 29 JH 0.12 0.12 0.13 0.12 0.14 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.11 0.13 0.14 0.1													_				_										
etermination of Ratings and Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1 st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the												_	_			-	_										-
etermination of Ratings and Weights LOFS = Fraction Rate/Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the												0.3				-	_			0.10	0.0	7 0.05	0.07	0.07			
etermination of Ratings and Weights LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = 0.2+0.04+0.02++0.02+0.02)/12										26	WL	0.1	12	0.12	0.1	-	_		0.11	0.13	0.1	3 0.11	0.08	0.13	0.11	0.11962365	0.
Pretermination of Ratings and Weights 29 JH 0.12 0.13 0.12 0.14 0.11 0.13 0.11 0.08 0.13 0.11 0.1962365 0. Fraction Rate = Sum of row/ no of criteria Excel formula of the 1st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1st Cell = Cell No/Max (Cell 1:Cell12 of the										27	ESC	0.3	20	0.17	0.2	3 0.	20	0.27	0.43	0.23	0.3	4 0.43	0.34	0.34	0.43	0.29917688	1.
Ratings and Weights 30 Fraction Rate = Sum of row/ no of criteria Excel formula of the 1st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1st Cell = Cell No/Max (Cell 1:Cell12 of the					. L :	:-		_ _	•	28	QR	0.1	10	0.10	0.1	0 0.	10	0.09	0.05	0.10	0.0	7 0.05	0.07	0.07	0.05	0.07869444	0.
Ratings and Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1st Cell = Cell No/Max (Cell 1:Cell12 of the	316	311		Пč	1L	IO	nc	J		29	JH	0.3	12	0.12	0.1	3 0.3	12	0.14	0.11	0.13	0.1	3 0.11	0.08	0.13	0.11	0.11962365	0.
Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1st Cell = Cell No/Max (Cell 1:Cell12 of the										30																0.29917688	
Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1st Cell = Cell No/Max (Cell 1:Cell12 of the	D	nt	in			n	4				_															/	-
Weights Fraction Rate = Sum of row/ no of criteria Excel formula of the 1 st Cell = 0.2+0.04+0.02++0.02+0.02)/12 LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the		αι		<u>y</u> 5	Ċ	111	u																				7
LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the											F	racti	on R	late	= Sur	n of	row	/ no	of cr	iteria							/
LOFS = Fraction Rate/ Max (Fraction Rate) Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the		M	Δ	ial	nt	C					F	vcelt	form	ula	of th	e 1st	Cel	= 0	2+0 0	04+0.02	+ +	0.02+0	02)/12	r			/
Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the		VV		'yı	11	J.J						ACCI	0111	and	51 41		Cel	- 0					02//12				/
Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the				-																						_ /	
Excel formula of the 1 st Cell = Cell No/Max (Cell 1:Cell12 of the															LOF	S = F	ract	ion	Rate/	Max (F	racti	on Rate	2)				
																							-	1.0.11	2		
Fraction Rate Column)															EXC	el lol	mu	a 01	the 1	- Cell	cell	NO/IVIa	ix (cell	T:Cell1	2 01 0	le	
															Fra	ction	Rat	e Co	lumn)							

Follow us on:

www.gsi.gov.in

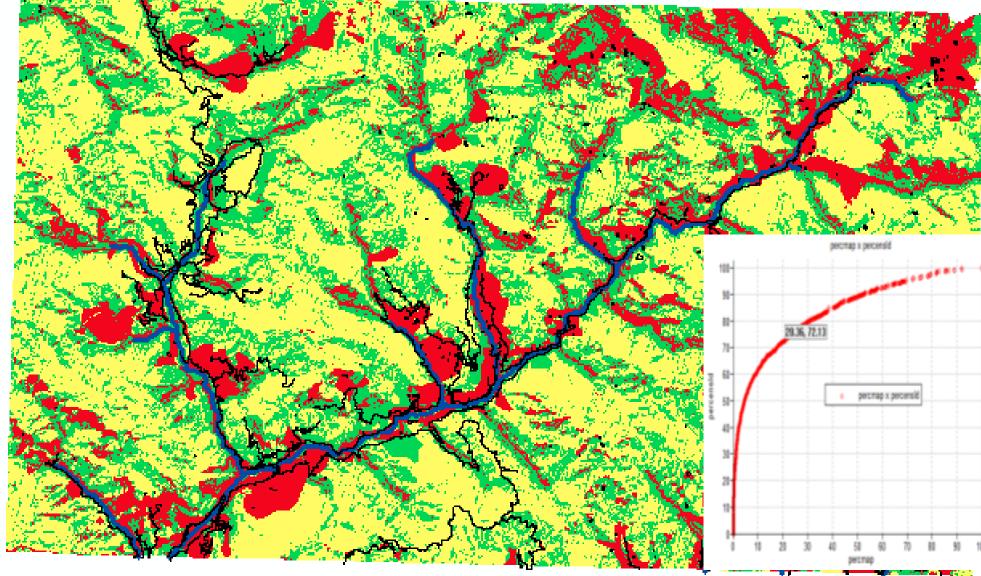

🔼 🕞 💟 🞯 🛅

Weighted Multi-class Index Overlay

 $\sum W_i$

• Multi-class predictor maps, S_i , are combined using the following equation, which calculates an average score, \overline{S} , for every location (or pixel): $\sum_{\sum S_{ij}W_i}^{n}$

 $\overline{S} = -$



Map Integration

www.gsi.gov.in

Landslide Susceptibility Map and Validation

Follow us on:

Red – High; Green – Moderate & Yellow – Low;

Landslides: What tool we already have

GSI's National Landslide Susceptibility Mapping (NLSM) Project (2014-2022) An excellent spatial forecasting tool for landslides

Total NLSM Target = **434**k sq. km

Mapping completed till March 2020 = 363k sq. km (~85%)

Data uploaded in Bhukosh Portal for free download and use by all

- ✓ NLSM Maps = 363k sq. km. (85% of total target)
- Landslide polygons mapped = 61,287 nos.
- ✓ Landslide inventory with detailed field based attributes = 28,831 nos.

Landslides: Scenario in India

Northwestern Himalayas

	State/ UT	Target area proposed (km ²)	Target area mapped so far (km ²)	Landslide polygons mapped (Nos.)	Landslides field validated (Nos.)	High Susceptible %	Landslide No Density %
-	Himachal Pradesh	42100	42108	17127	6420	26	41
	Jammu & Kashmir (UT) & Ladakh (UT)	68700	68955	8303	2340	17	12
T	Uttarakhand	39000	39009	14782	4927	22	38
1 N	Total	149800	150072	40212	13687	22	27

Eastern Himalayas

State	Target area proposed (km ²)	Target area mapped so far (km ²)	Landslide polygons mapped (Nos.)	Landslides field validated (Nos.)	High Susceptible %	Landslide No Density %
Sikkim	4980	4979	3379	651	17	68
West Bengal	2970	2980	1554	1529	17	52
Total	7950	7959	4933	2180	17	62

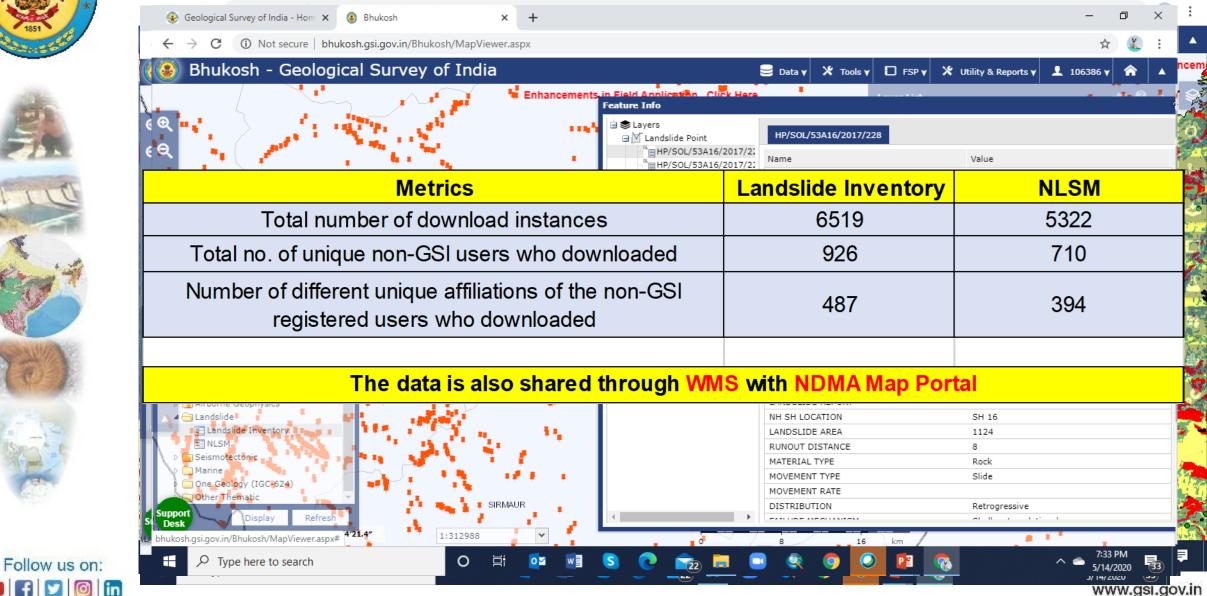
E

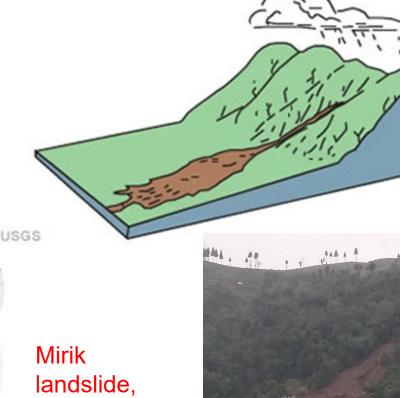
Landslides: Scenario in India

	Northeas	tern Himala	ayas & Sub-Hii	malayana Regi	on	
State	Target area proposed (km ²)	Target area mapped so far (km ²)	Landslide polygons mapped (Nos.)	Landslides field validated (Nos.)	High Susceptible %	Landslide No Density %
Arunanchal Pradesh	71210		Mapping in progr	ess; completion by	/ March 2022	
Assam	24100	24144	527	598	2	2
Meghalaya	22020	22601	1525	791	1	7
Mizoram	21040	21864	4221	2003	18	19
Tripura	1300	1367	57	56	2	4
Manipur	22500	23250	2405	1548	14	10
Nagaland	16320	17294	2742	1554	16	16
Total	178490	110520	11477	6550	9	10

-

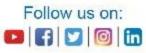
Landslides: Scenario in India


	Western & Eastern Ghats						
State	Target area proposed (km ²)	Target area mapped so far (km ²)	Landslide polygons mapped (Nos.)	Landslides field validated (Nos.)	High Susceptible %	Landslide No Density %	
Maharashtra	28190	29191	1134	1152	3.68	4	
Karnataka & Goa	34160	34869	1324	1324	6.65	4	
Tamil Nadu	10080	10549	782	863	6.64	8	
Kerala	19330	19301	1396	3016	11.29	16	
Andhra Pradesh	1150	1124	29	29	6.26	3	
Total	92910	95034	4665	6384	7	7	


National geodatabase in public domain

(http://bhukosh.gsi.gov.in/Bhukosh/Public)

Landslide Runout Hazards


Malin Landslide, Pune: 2014, 151 people died

Pettimudi Debris Flow, Idukki, Kerala (06.08.2020) 66 people died

Source: SU: Kerala, GSI www.gsi.gov.in

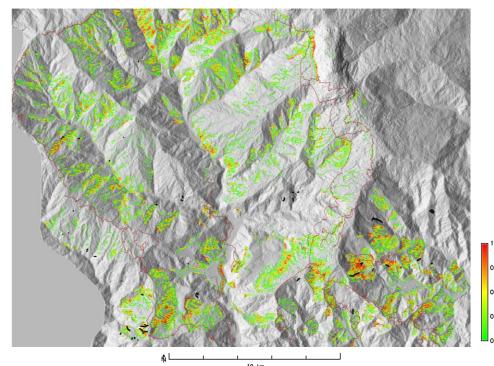
Debris Flow Modeling

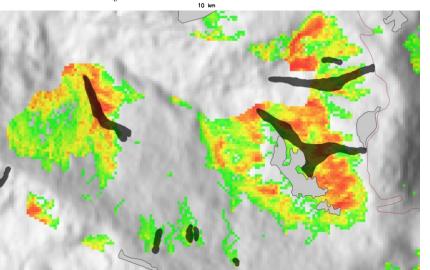
CONCEPTUAL MODELS

Spatial landslide susceptibility at catchment or regional scales are useful for hazard indication zoning and for prioritizing target areas for risk mitigation.

PHYSICAL BASED MODELS

- Usually employed at slope scale
- Requires physical parameter of the material like type of material, its shear strength, porosity and permeability, volume etc.
- Limited to a single slope and a highly site-specific deterministic approach





Follow us on:

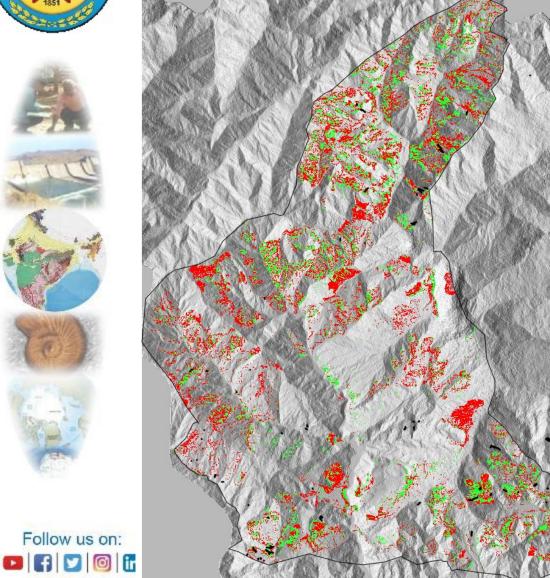
Debris Flow Modeling (Conceptual Model)

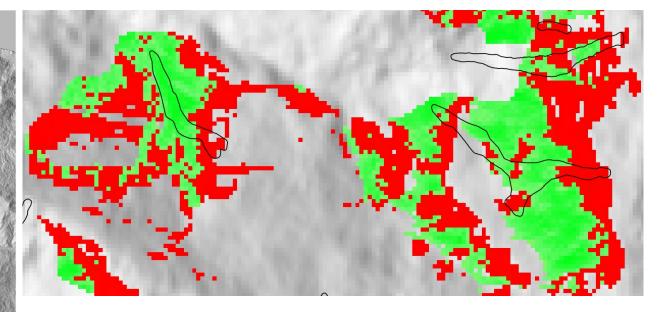
Source data

- 1) Debris flow inventory
- 2) Very high resolution DEM
- 3) Slope Forming Map

Methodology

 We delineate source area from the known debris flow inventory and/ or identify possible debris accumulated zone as potential source area


2) Define Topographic parameters from DEM of the source area and possible stopping location by running *r.randomwalk* conceptual model developed by *Mergili, Krenn, and Chu, 2015*


3) Determine the probability of impact of pixel by possible debris flow, following Monte Carlo Simulation

Generation of Combined Susceptibility Model

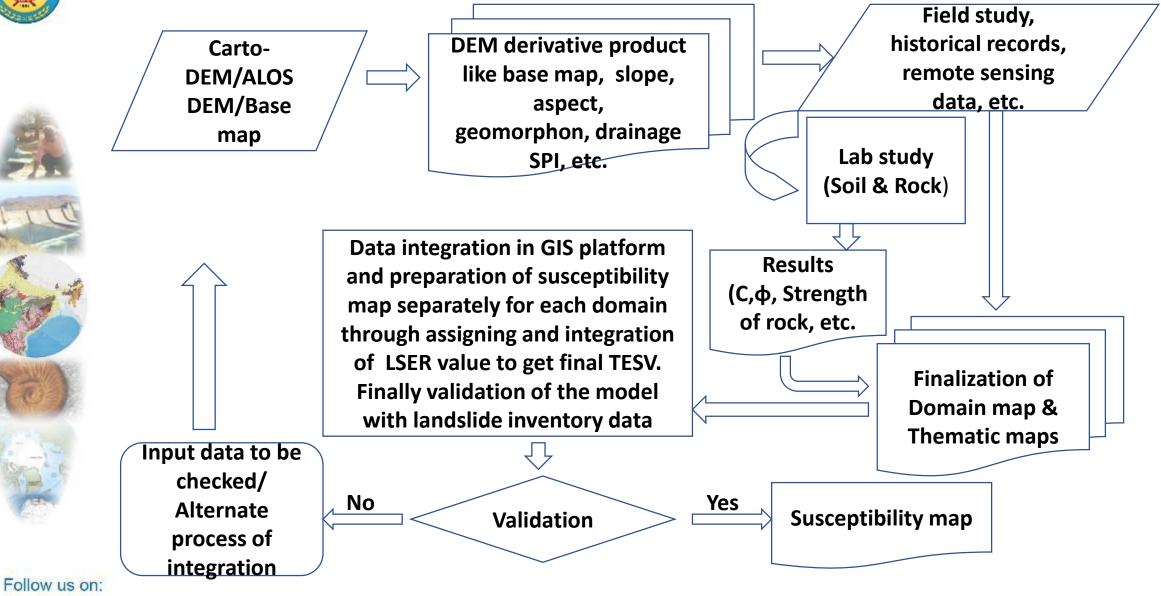
(Initiation/ Source + Runout)

High Initiation susceptibility

High Runout susceptibility (From Debris Flow Impact Probability Map)

Methodology: LSA (Meso scale 1:10,000)

- This is mostly being carried out through knowledgedriven technique only
- Recently, GSI has finalised a methodology after carrying out five pilot studies in different terrains.


At this scale, the area to be studied is much smaller (~30-50 sq. km.) and more reliance is given on **field inputs** only

🔽 🙆 in

Methodology: LSA (Meso scale 1:10,000)

Concept of landslide domain

	Sr. No	Class	Criteria used for mapping
	1	Debris	Areas occupied by overburden-covered slopes comprises of colluvium, compact debris, loose debris, slope wash, regolith.
TIC	2	Earth failure domain	Areas occupied by overburden-covered slopes comprises of soil.
5	3	Rock failure domain	Areas with rock cover
	4	Cut slope failure domain	Buffers of 25 m, 50 m & 75 m of NH, SH and important roads in Low, moderate and highly dissected geomorphological terrain respectively on the basis of visibility at the field.
Follow us o	5	No landslide domain	These are the areas where there is no chance of initiation of landslide like the one alluvium material (sandy) deposited within the river channel and water body.
	. w		

Mapping Units and Geofactors

Geofactor	Remarks				
Mapping Unit	Pixel (10 m/ 12.5 m) or Slope Facet				
Slope Morphometry Factors	Derived maps from either 10 m CartoDEM or 12.5 m Alos Pulsar DEM				
Landslide inventory	Prepare from all the sources (Remote Sensing, Field, Legacy reports, Media reports, reports from other departments etc.)				
Slope forming material (SFM) map	Theme should be prepared/ confirmed through direct field inputs only, Prepare geotechnical map using SFM (Kumar et. al, 2019, GSI Report)				
Hydrology map	Take the point data of hydrology condition of the slope e.g. dripping, flowing condition				
Land use/land cover map	Prepared during pre-field but field validated				
Structural data	RMR, Kinematic analysis, Kinematic failure map				
Field sample (Rock and soil)	Sample (Approx. 5kg overburden sample, weight the overburden sample immediately to know the wet weight for further calculation of the Natural moisture content)				
Geotechnical map	SFM, Rock Mass Rating (RMR) for rock, C & \emptyset for overburden (Other field parameters for extrapolation of the polygon)				

	10	केलान	THE	
WIN	Cancel and	-	and and	-
1	1	Ł	2	
	33		D	1

🖸 🖬 💟

ATT		Weights						
A SHENEY FAL	Rock Slide		Debris/Earth slide		For Rock Fall		For Rock slide	
	Factors	Weightage	Factors	Weightage		nical map(GT)	Geotechnical map (0	
	1. Geotechnical map (GT)	0.6	1. Geotechnical map (GT)	0.5	Very good	0.2	Very good	0
	2. Kinematic failure (KF)	0.4	2. Landform (LF)	0.3	good	0.4	Good	C
	er minennene minere gen j		3. Stream Power Index (SPI)	0.1	fair	0.6	Fair	0
			4. WLC	0.1	bad	0.8	Bad	0
	Total Estimated Susceptibility Values (TESV)	1.0	Total Estimated Susceptibility Values (TESV)	1.0			Very bad	1
	Rock fall		Cut-slope fail	ure	Very bad	1.0	Kinema	tic failure map (l
	1. Geotechnical map (GT)	0.4	1. Regolith thickness (RT)	0.2		failure map(T)	1 critical condition	0
	2. Toppling failure (TF)	0.4	2. Slope map(S)	0.2	1 critical	0.8	2 critical condition	C
-CONC.	3.UUC	0.2	3. Geotechnical map (GT) 4. Relative Relief (RR)	0.4	condition		3 critical condition	C
100	Total Estimated Susceptibility	1.0	Total Estimated Susceptibility	1.0	2 critical	1.0	4 critical condition	C
	Values (TESV)		Values (TESV)		condition		5 critical condition	1
7.	For (Debris/ Earth Sli	ide)	Stream power Inde	x (SPI)			Cut slo	pe
							Regolith thick	(RT)
T	0-1(very low erosion)			0.2	0-1			
110	1-2(low erosion)			0.4	1-2			
ala	2-5(moderate erosion)		0.6				
-	5-10(High erosion)			0.8	2-5			
X	>10(very high erosion)		1.0	>5			
10 10			Landform map ('LF)			Relative Relief	f map (RR)
	Flat			0.2	0-25 m			
	Ridge & depression			0.4	25-50 m			
	Shoulder, Spur & foot	slope		0.6	50-75 m			
ACTION AND A	Slope			0.8	75-100 m			
2-1	Hollow			1.0	>100 m			
07			Landuse/Landcover		2100 111		Geotechnical	map (GT)
	Thick vegetation			0.2	Very good			
15- 2-16	Moderate vegetation			0.4	good			
The second	Tea plantation, cultiva	tion and		0.6	fair			
	grassland				bad			
() de	Sparse vegetation			0.8				
and the second	Barren			1.0	Very bad			
			Geotechnical map	(GT)			Slope an	gle(S)
	Very good			0.2	0-15			
	good			0.4	15-25			
Follow us	fair			0.6	25-35			
🗖 🖪 🔽	bad			0.8	35-45			
	10 1 1			4.0	- 4P			

Ratings & Weights

ap (GT) 0.2 0.4 0.6 0.8 1.0 map (KF) 0.2 0.4 0.6 0.8 1.0

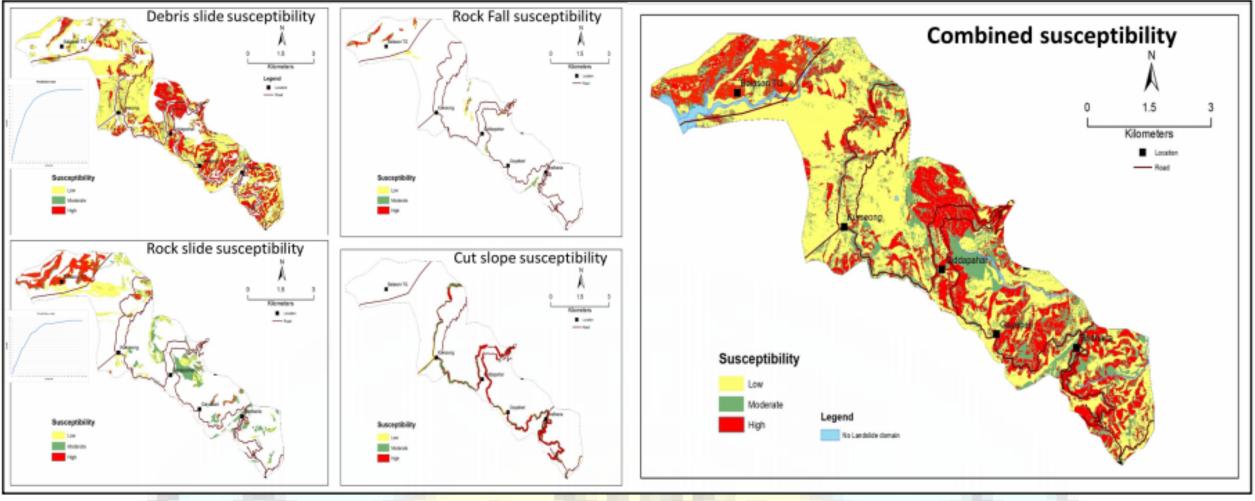
0.2 0.4

0.8 1.0

0.2 0.4 0.6 0.8 1.0

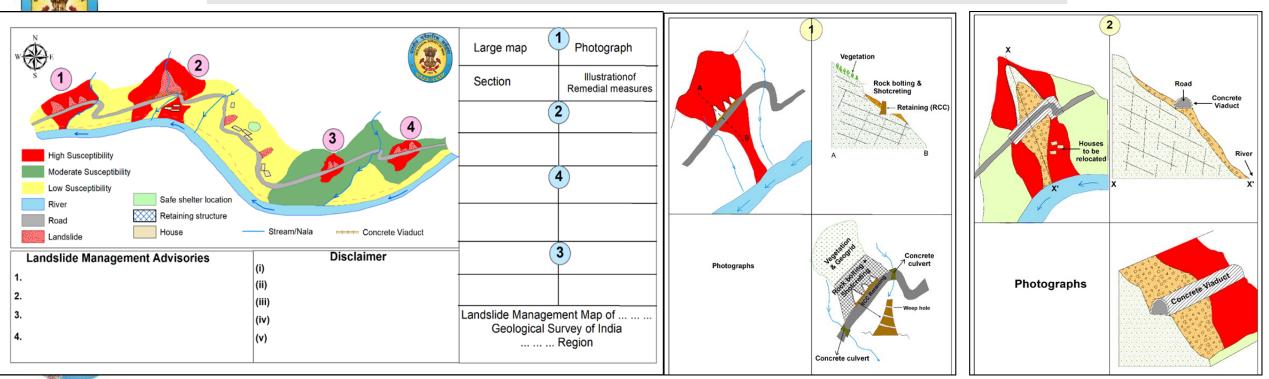
0.2 0.4 0.6 0.8 1.0

0.2 0.4

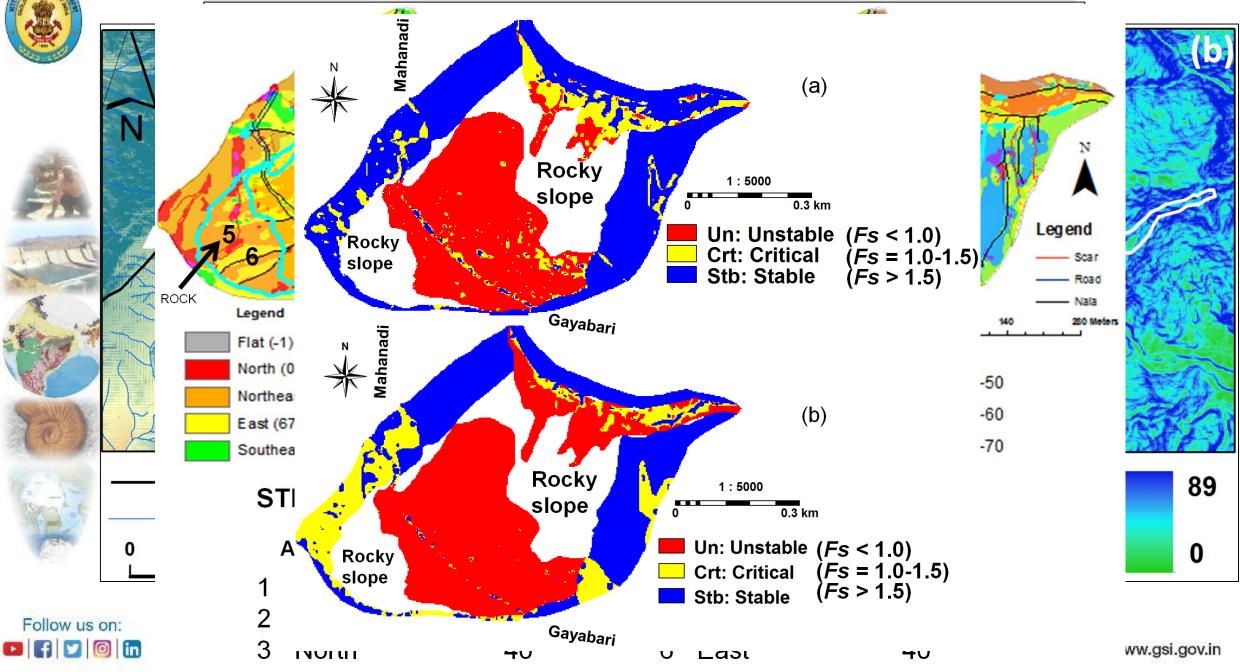

0.6

0.8

1.0



Final landslide susceptibility map (1:10,000)

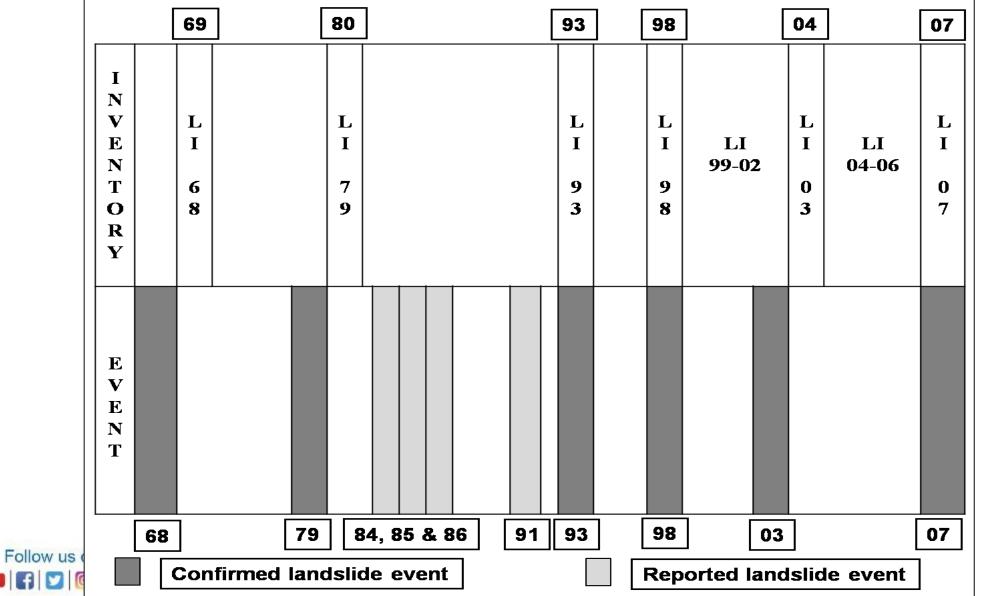


Landslide management map (1:10,000)

	 Landslide Management Advisory (1) Provision of RCC Retaining Wall on hillside Nala training 2 nos. with concrete culverts Weep holes for drainage and hillside lined drains on road bench On bare loosened rock face, Rock bolting and SFRS 	 Disclaimer (1) 1. RCC Retaining structure to be designed based on insitu conditions 2. SFRS and Rock Bolting pattern to be decided after consultation of site geologists and engineers 3. Nala training and culverts to be constructed as per available site conditions 	
Follow us on:	 Landslide Management Advisory (2) 1. Concrete viaduct/ tunnel for permanently avoiding the rockfall zone 2. Settlements/ Houses to be relocated 	Disclaimer (2) 1. Concrete viaduct to be designed after consulting insitu condition, rockfall impact analysis, and rock fall modeling after consulting a suitable Geotechnical Engineer	v.gsi.gov.in

Methodology: LSA (Site Specific Scale 1:1,000)

GEOLOGICAL SURVEY OF INDIA

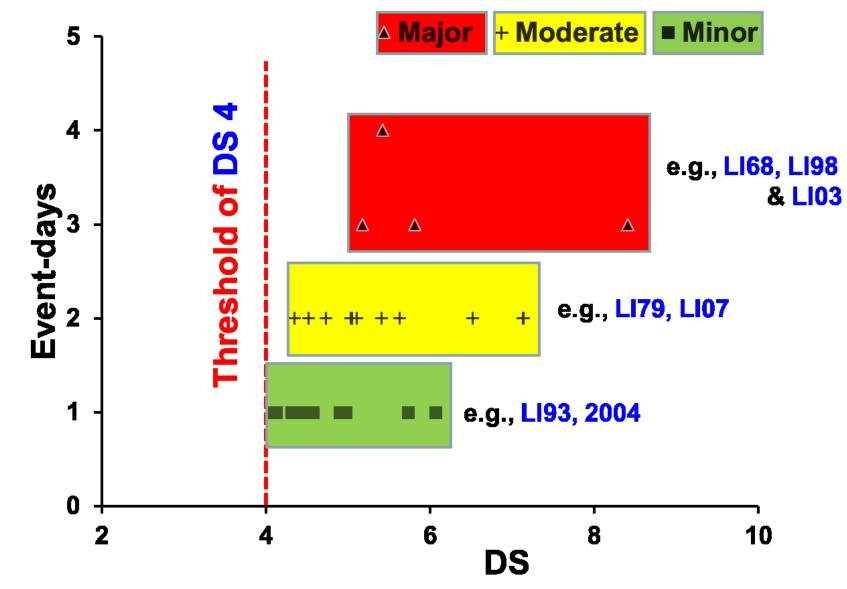

Landslide Hazard & Risk Analysis – not a trivial task!!!

f

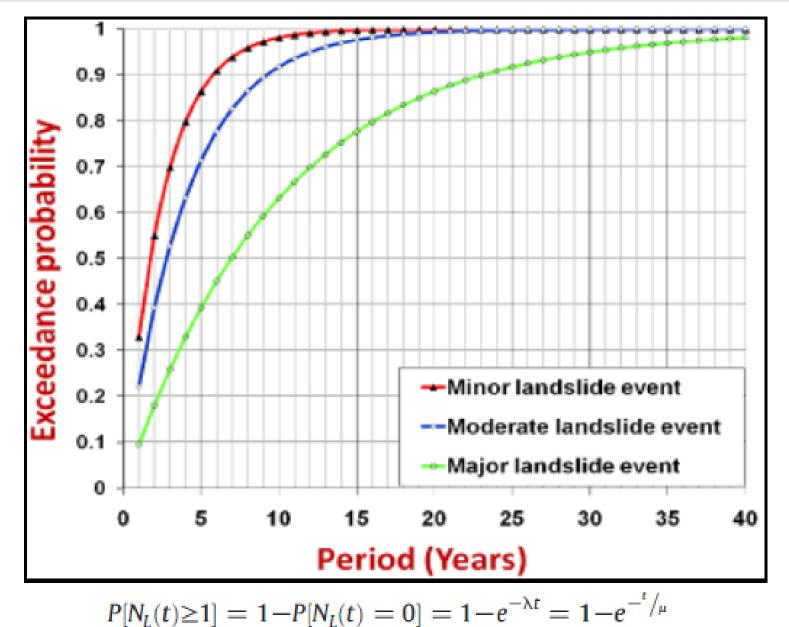
Landslide Inventory & Classification

Confirmed landslide days = 24 (1968-2007)

How to classify events based on magnitude

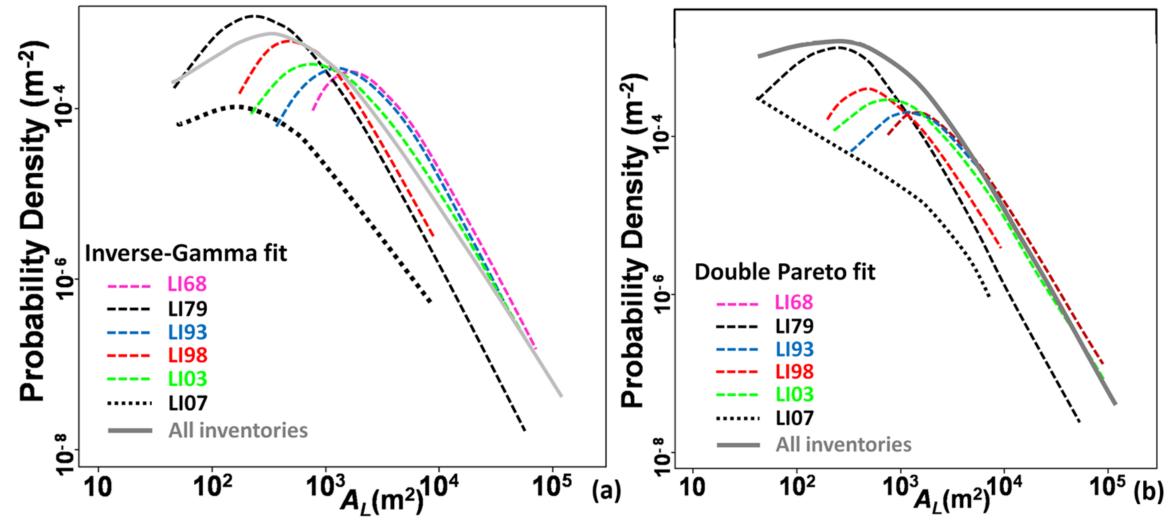

				Predic	cted	Tatal
				No landslide	Landslide	Total
Cases for	Original	Count (days)	No landslide	4610	232	4842
model calibration			Landslide	4	16	20
Cases for model	Original	Çount	No landslide	1196	58	1254
validation	Original (days)		Landslide	0	4	4

 $DS = -0.637 + (0.021DR) + (0.01AR_1) + (0.004AR_2) - (0.003AR_5)$


Classification of Events based on Magnitude

Follow us on:

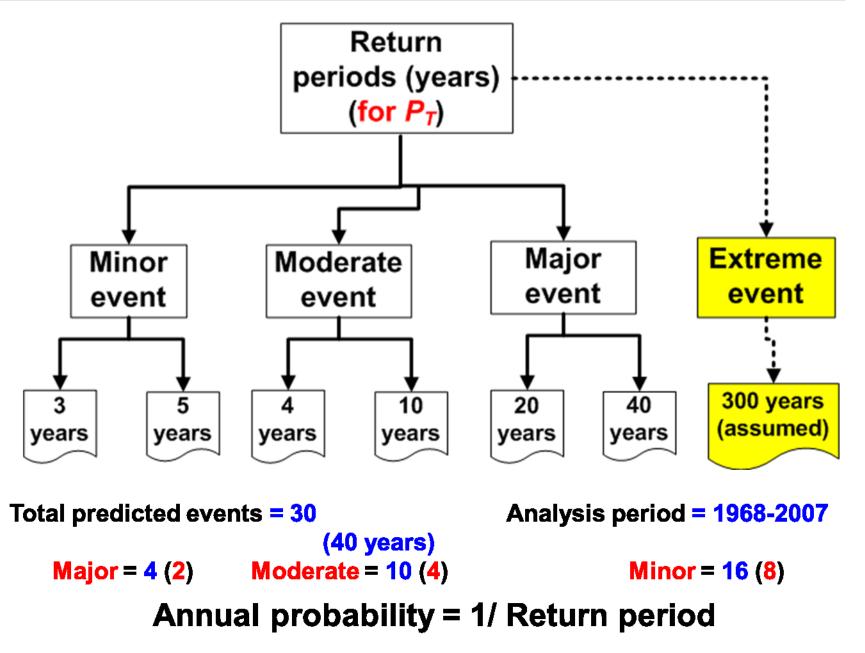
Calculation of Probability of Event

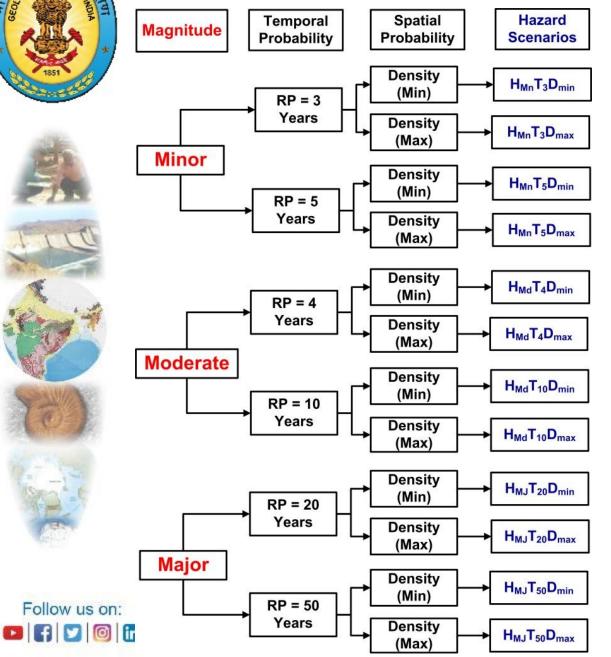


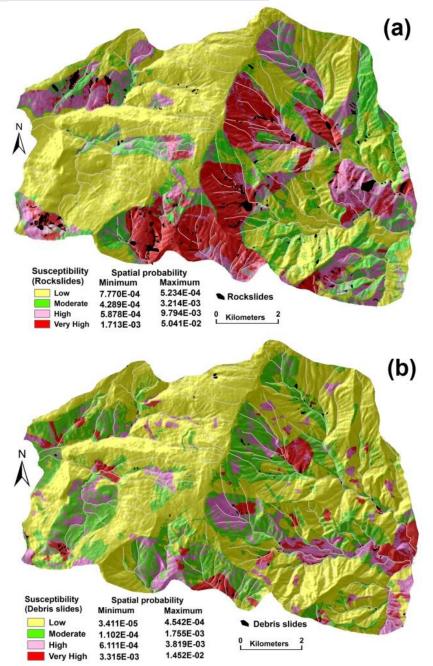
Poisson's Distribution Model

Alternative: Probability of Event based on landslide size

Follow us on:

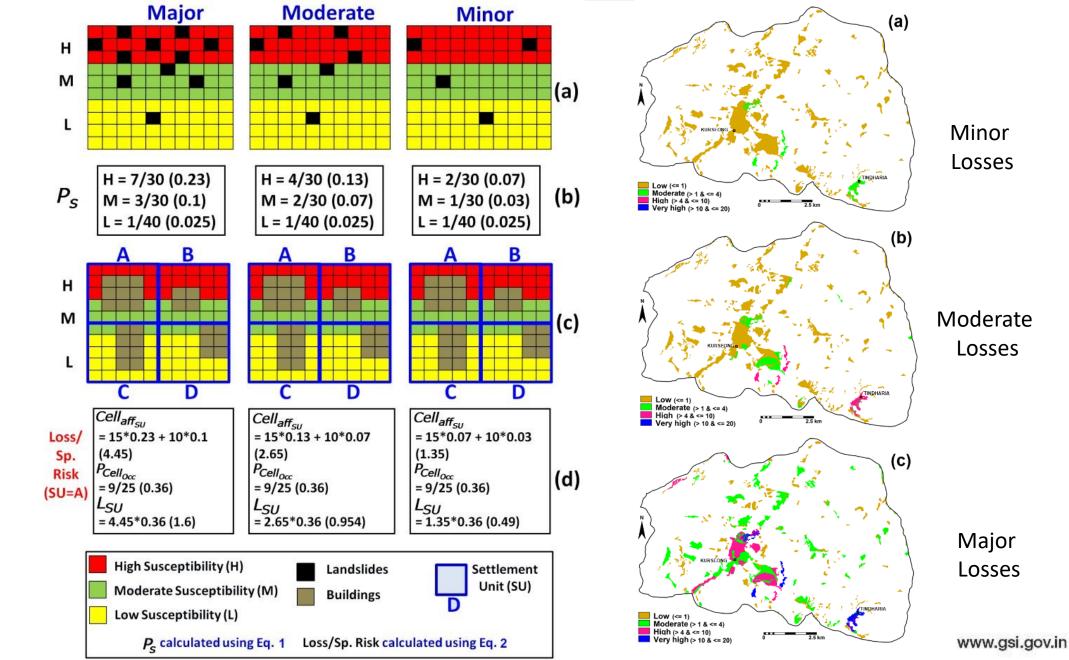

Malamud et al., 2004


Follow us on:


🔼 🕞 💟 🎯 🛅

Probability (Event) Temporal Prediction

Hazard Scenarios and Maps



Follow us on:

🕒 🕞 💟 🎯 🛅

Hazard descriptor	Rock falls from natural cliffs or rock cut slope			Individual landslides on natural slopes
	Number/ annum/km or cliff or rock cut slope	Number/ annum/ km of cut or fill	Number/ km²/annum	Annual probability of active sliding
Very high	>10	>10	>10	10-1
High	1 to 10	1 to 10	1 to 10	10-2
Moderate	0.1 to 1.0	0.1 to 1.0	0.1 to 1.0	10 ⁻³ to 10 ⁻⁴
Low	0.01 to 0.1	0.01 to 0.1	0.01 to 0.1	10-5
Very low	<0.01	<0.01	<0.01	<10-6

Likelihood	Annual	Consequen	ces to	proper	ty (with	indicative	
	Probabil	approximate cost of damage) ⁽¹⁾⁽³⁾					
	ity	1:	2:	3:	4: Minor	5:	
		Catastroph	Major	Mediu		Insignifica	
		ic		m		nt	
		200%	60%	20%	5%	0.5%	
A – Almost	10-1	VH	VH	VH	Н	M or L	
Certain							
B-Likely	10-2	VH	VH	Н	Μ	L	
C-Possible	10-3	VH	Н	Μ	Μ	VL	
D-Unlikely	10-4	Н	Μ	L	L	VL	
E-Rare	10 ⁻⁵	Μ	L	L	VL	VL	
F-Barely	10 ⁻⁶	L	VL	VL	VL	VL	
credible							



Limitations & Constraints

- o Incomplete historic landslide inventory data
- Non-availability of landslide dates
- Non-availability of information on landslide dimension (area & volume)
- Poor spatial distribution of rainfall stations
- Non-availability of rainfall intensity information
- Non-availability of up-to-date census information

THANK YOU & **Please** Stay Safe